Published on Web 03/25/2009

Hydrogen Elimination in Bulky Calcium Amidoborane Complexes: Isolation of a Calcium Borylamide Complex

Jan Spielmann and Sjoerd Harder*
Universität Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany

Received February 11, 2009; E-mail: sjoerd.harder@uni-due.de

Ammonia-borane $\left(\mathrm{NH}_{3} \mathrm{BH}_{3}\right.$, Scheme 1$)$ is currently receiving enormous attention as a hydrogen storage material. ${ }^{1}$ It is neither flammable nor explosive, features an extremely high hydrogen content of $19.6 \mathrm{w} \%$, and, calculated by volume (146 g of $\mathrm{H}_{2} / \mathrm{L}$), far exceeds the storage capacities of liquid hydrogen ($70 \mathrm{~g} / \mathrm{L}$ at 20 K). ${ }^{1 \text { a }}$ Despite these advantages, there are also some major drawbacks among which are a relatively high hydrogen release window $\left(120-450{ }^{\circ} \mathrm{C}\right)$ and the nonreversibility of the dehydrogenation reaction (hitherto only a chemical route for regeneration of BN to $\mathrm{NH}_{3} \mathrm{BH}_{3}$ is known). ${ }^{2}$ The recently introduced metal amidoboranes (Scheme $1, \mathrm{M}=\mathrm{Li}, \mathrm{Na},{ }^{3 \mathrm{a}}$ or $\mathrm{Ca}^{3 \mathrm{~b}}$) seem to be even more promising and show many advantages over $\mathrm{NH}_{3} \mathrm{BH}_{3}$: (i) lower hydrogen release temperatures $\left(90-170{ }^{\circ} \mathrm{C}\right.$), (ii) no emission of the volatile side-product borazine, (iii) no induction period for hydrogen release, (iv) no foaming during hydrogen release, and (v) the dehydrogenation process is much less exothermic $\left(3-5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ than that for $\mathrm{NH}_{3} \mathrm{BH}_{3}\left(22-28 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) .{ }^{4 \mathrm{c}, \mathrm{d}}$ The latter aspect is promising for the development of convenient regeneration routes with molecular hydrogen.

Scheme 1

Although the mechanism for dehydrogenation of ammonia-borane is widely investigated, ${ }^{4}$ hydrogen release in metal amidoborane salts is much less understood. We recently prepared defined calcium amidoborane complexes, $\mathbf{1}(\mathbf{H})$ and $\mathbf{1}(\mathbf{M e})$, which dissolve well in apolar solvents. ${ }^{5}$ These solubilized calcium amidoborane complexes already release hydrogen at $20-40{ }^{\circ} \mathrm{C}$. ${ }^{6}$ The homogeneous conditions also allowed characterization of the soluble dehydrogenation products $\mathbf{2 (H)}$ and $\mathbf{2 (M e)}$ by NMR and single crystal structure determination. In both cases, hydrogen release resulted in the formation of the hitherto unseen dianion: $\left(\mathrm{RN}-\mathrm{BH}-\mathrm{NR}-\mathrm{BH}_{3}\right)^{2-}$ ($\mathrm{R}=\mathrm{H}$ or Me). This dianionic species can formally be regarded as a donor-acceptor complex of a boraamidinate (bam) ligand $(\mathrm{RN}-\mathrm{BH}-\mathrm{NR})^{2-}$ with $\mathrm{BH}_{3}{ }^{7}$

Pressurizing a solution of the dimeric dehydrogenation products $\mathbf{2 (H)}$ and $\mathbf{2 (M e)}$ with 100 bar of hydrogen did not result in regeneration of the amidoborane complexes $\mathbf{1}(\mathbf{H})$ and $\mathbf{1}(\mathbf{M e})$, respectively. The newly formed $\mathrm{B}-\mathrm{N}$ bond likely prevents such a conversion. To prevent dimerization by $\mathrm{B}-\mathrm{N}$ bond formation, we prepared more sterically hindered calcium amidoborane complexes and investigated their structures and decomposition products.
Reaction of the soluble calcium hydride complex [DIPPnacnacCaH $\cdot(\mathrm{THF})]_{2} \quad$ (DIPP-nacnac $=\mathrm{CH}\{(\mathrm{CMe})(2,6-$

$\left.\left.i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}\right)\right\}_{2}$) with ($i \mathrm{Pr}$) $\mathrm{NH}_{2} \mathrm{BH}_{3}$ gave $\mathbf{1}(\mathbf{i P r})$ in 76% crystalline yield. The more sterically hindered amidoborane complex $\mathbf{1 (D I P P)}$ was prepared by reaction of DIPP-nacnacCaN($\left.\mathrm{SiMe}_{3}\right)_{2} \cdot(\mathrm{THF})$ with (DIPP) $\mathrm{NH}_{2} \mathrm{BH}_{3}\left(\right.$ DIPP $\left.=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ in 82% crystalline yield. Both crystallize as monomeric complexes with coordination of one additional THF ligand (Figure 1). The $\mathrm{RNHBH}_{3}{ }^{-}$ions show the typical side-on coordination also observed in $\mathbf{1 (H)}$ and $\mathbf{1}(\mathbf{M e}) .{ }^{5}$ Increasing the steric bulk of the substituent R on nitrogen results in slight elongation of the $\mathrm{N}-\mathrm{Ca}$ bond distance, shortening of the $\mathrm{BH}_{3} \cdots \mathrm{Ca}$ contact, and linearization of the angle $\mathrm{R}-\mathrm{N}-\mathrm{Ca}$ (Table 1). Although the $\mathrm{B}-\mathrm{N}$ bond lengths are unaffected by the substituent R , an increase in bulk has a drastic influence on the stability of these calcium amidoborane complexes (Table 1). In $\mathrm{C}_{6} \mathrm{D}_{6}, \mathbf{1}(i \mathbf{P r})$ releases hydrogen at $100^{\circ} \mathrm{C} . \mathbf{1}(\mathbf{D I P P})$ even needs a temperature of $120^{\circ} \mathrm{C}$, and ligand exchange to homoleptic species becomes a problem. Changing the solvent from benzene to THF, however, prevents this side reaction.

Table 1. Selected Bond Distances (\AA), Angles (deg), and Decomposition Temperatures (${ }^{\circ} \mathrm{C}$) for Complexes 1(R)

complex	$1(\mathrm{H})^{5}$	1 (Me) ${ }^{5, a}$	1(iPr) ${ }^{\text {a }}$	1(DIPP)
$\mathrm{Ca}-\mathrm{N}$	2.399(2)	2.382(4)	2.406 (4)	2.460(2)
Ca \cdots B	2.867(4)	2.584(7)	2.614(6)	2.570 (3)
$\mathrm{B}-\mathrm{N}$	1.581(4)	1.581(8)	1.582(7)	1.587(4)
$\mathrm{R}-\mathrm{N}-\mathrm{Ca}$	120(2)	125.8(3)	130.7(4)	147.6(2)
$T_{\text {decomp }}$	20	40	100	120

${ }^{a}$ The amidoborane unit is disordered; average values are given.
Decomposition of $\mathbf{1}(\boldsymbol{i P r})$ gave the dimeric product $\mathbf{2}(\boldsymbol{i P r})$ in 53% crystalline yield (Figure 2a). Similar to 2(H) and 2(Me), the B-N bond lengths within the unit $i \operatorname{PrN}-\mathrm{BH}-\mathrm{N}(i \operatorname{Pr})-\mathrm{BH}_{3}{ }^{2-}$ show the typical pattern: short (N6-B1 1.394(3) A), intermediate (B1-N5 $1.478(3) \AA$), and long (N5-B2 1.542(3) \AA). In contrast to the
structures of $\mathbf{2 (H)}$ and $\mathbf{2 (M e)}$, the terminal nitrogen atom N6 in $\mathbf{2 (i P r})$ does not bridge both Ca^{2+} ions but is only connected to Ca 2 and N5 binds to Ca1.

Figure 1. (a) Crystal structures of (a) $\mathbf{1}(\boldsymbol{i P r})$ (hydrogen atoms on BH_{3} could not be located due to disorder) and (b) 1(DIPP). The $i \operatorname{Pr}$ groups on the bidentate ligand and most hydrogen atoms are omitted for clarity. Selected bond distances (\AA) in addition to those in Table 1: (a) $\mathrm{Ca}-\mathrm{N} 1$ 2.348(2), $\mathrm{Ca}-\mathrm{N} 2$ 2.356(2), $\mathrm{Ca}-\mathrm{O} 2.362$ (2); (b) $\mathrm{Ca}-\mathrm{N} 12.345(2), \mathrm{Ca}-\mathrm{N} 2$ $2.350(2), \mathrm{Ca}-\mathrm{O} 2.370(2), \mathrm{Ca} \cdots \mathrm{H} 12.27(3) . \mathrm{Ca} \cdots \mathrm{H} 22.41(3)$.

Whereas the $i \operatorname{Pr}$ substituent still allows formation of the NBNB chain, the DIPP substituent is bulky enough to prevent such dimerization. Decomposition of $\mathbf{1}(\mathbf{D I P P})$ gave the monomeric product $\mathbf{3}$ (DIPP) in 71% crystalline yield. The crystal structure (Figure 2b) shows decomposition into a borylamide, $\mathrm{H}_{2} \mathrm{~B}-(\mathrm{R}) \mathrm{N}^{-}$, with resonance structure $\mathrm{H}_{2} \mathrm{~B}^{-}=\mathrm{N}(\mathrm{R})$, that is edge-on coordinated

Figure 2. (a) Crystal structures of (a) 2(iPr) and (b) 3(DIPP). The $i \mathrm{Pr}$ groups on the bidentate ligand and most hydrogen atoms are omitted for clarity. Selected bond distances (A): (a) Ca1-N1 2.369(2), Ca1-N2 2.342(2), Ca1-N5 2.490(2), Ca1 \cdots B2 2.620(3), Ca1-O 2.319(2), Ca2-N3 2.357(2), Ca2-N4 2.352(2), Ca2-N6 2.283(2), Ca2••B2 2.701(3); (b) $\mathrm{Ca}-\mathrm{N} 12.343(1), \mathrm{Ca}-\mathrm{N} 32.302(2), \mathrm{Ca} \cdots \mathrm{B} 2.760(2), \mathrm{Ca}-\mathrm{O} 2.342(1)$, $\mathrm{Ca} \cdots \mathrm{H} 12.38(2)$.
to Ca^{2+}. The p-type lone pair on the N atom is perfectly shielded by the $i \mathrm{Pr}$-substituents in the ortho-position. As lithium borylamides with small substituents on B normally show high reactivity, ${ }^{8 a}$ this shielding is responsible for the stability of $\mathbf{3}$ (DIPP). Bulky groups on N also prevent the dimerization of $i \mathrm{Pr}_{2} \mathrm{~N}=\mathrm{BH}_{2}{ }^{6{ }^{6}} \mathrm{The} \mathrm{B}-\mathrm{N}$ bond length $1.353(3) \AA$ in $\mathbf{3}$ (DIPP) is slightly smaller than those in substituted lithium borylamide complexes $\mathrm{LiN}(\mathrm{R})=\mathrm{BR}_{2}^{\prime}$ (1.383(4)$1.386(7) \AA)^{8 \mathrm{ab}}$ or in an $(\operatorname{aryl})_{2} \mathrm{~B}=\mathrm{NH}_{2}$ adduct $(1.375(8) \AA){ }^{8 \mathrm{~b}}$

The anionic BN-fragment in 3(DIPP) could be seen as a donor/ acceptor pair that, similar to a frustrated Lewis pair, ${ }^{9}$ might be able to activate molecular hydrogen. As a recent calculational study shows that hydrogenation of $\mathrm{R}_{2} \mathrm{NBR}^{\prime}{ }_{2}$ to $\mathrm{R}_{2} \mathrm{HNBHR}^{\prime}{ }_{2}$ is favored for substrates with electron-rich N and electron-poor B atoms, ${ }^{10}$ hydrogenation of $\mathrm{H}_{2} \mathrm{~B}(\mathrm{R}) \mathrm{N}^{-}$might thermodynamically indeed be feasible. However, preliminary attempts to hydrogenate 3(DIPP) to 1(DIPP) have not been successful so far $\left(\mathrm{H}_{2}: 1-100 \mathrm{bar}\right.$, temperature: $20-100^{\circ} \mathrm{C}$). This could either be due to a substantial $\mathrm{B}=\mathrm{N} \pi$-bond energy ${ }^{11}$ or might have a kinetic origin. We currently study the catalytic hydrogenation of metal complexes containing the (DIPP) $\mathrm{N}=\mathrm{BH}_{2}{ }^{-}$ligand and evaluate substituent effects on N and B .

Acknowledgment. We thank Prof. Dr. R. Boese and D. Bläser for collection of the X-ray data and acknowledge the DFG for financial support.

Supporting Information Available: Synthetic procedures, analyses and crystallographic data for $\mathbf{1}(i \mathbf{P r}), \mathbf{1}(\mathbf{D I P P}), \mathbf{2}(i \mathbf{P r})$ and $\mathbf{3}(\mathrm{DIPP})$ (PDF). This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) For recent reviews, see:(a) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116-8118. (b) Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613-2626. (c) Clark, T. J.; Lee, K.; Manners, I. Chem.-Eur. J. 2006, 12, 8634-8648.
(2) Ramachandran, P. V.; Gagare, P. Inorg. Chem. 2007, 46, 7810-7817.
(3) (a) Xiong, Z.; Yong, C. K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. Nat. Mater. 2008, 7 (2), 138-141. (b) Diyablanage, H. V. K.; Shrestha, R. P.; Semelsberger, T. A.; Scott, B. L.; Bowden, M. E.; Davis, B. L.; Burrell, A. K. Angew. Chem., Int. Ed. 2007, 46, 8995-8997.
(4) (a) Li, J.; Kathmann, S. M.; Schenter, G. K.; Gutowski, M. J. Phys. Chem. C 2007, 111, 3294-3299. (b) Nguyen, V. S.; Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. A 2007, 111, 8844-8856. (c) Wolf, G.; Baumann, J.; Baitalow, F.; Hoffmann, F. P. Thermochim. Acta 2000, 343, 19-25. (d) Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.; Linehan, J. C. Inorg. Chem. 2008, 47, 8583-8585. (e) Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew. Chem., Int. Ed. 2007, 46, 746-749. (f) Pons, V.; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Chem. Commun. 2008, 6597-6599.
(5) Spielmann, J.; Jansen, G.; Bandmann, H.; Harder, S. Angew. Chem., Int. Ed. 2008, 47, 6290-6295.
(6) $\mathrm{NH}_{3} \mathrm{BH}_{3}$ releases hydrogen at room temperature by addition of catalysts or by dissolution in ionic liquids:Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424-9434. (b) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048-12049. (c) Chen, Y.; Fulton, J. L.; Linehan, J. L.; Autrey, T. J. Am. Chem. Soc. 2005, 127, 3254-3255. (d) Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006, 128, 9582-9583. (e) Bluhm, M. E.; Bradley, M. G.; Butterick III, R.; Kusari, U.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 7748-7749. (f) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129, 1844.
(7) $\mathrm{Fu} \beta$ stetter, H.; Nöth, H. Chem. Ber. 1979, 112, 3672-3681.
(8) (a) Paetzold, P.; Pelzer, C.; Boese, R. Chem. Ber. 1988, 121, 51-59. (b) Bartlett, R. A.; Chen, H.; Dias, H. V. R.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1988, 110, 446-449.
(9) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124-1126.
(10) Staubitz, A.; Besora, M.; Harvey, J. N.; Manners, I. Inorg. Chem. 2008, 47, 5910-5918.
(11) Grant, D. J.; Dixon, D. A J. Phys. Chem. A 2006, 110, 12955-12962.

JA901073C

